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Abstract 

Part 1 of this three part paper described the mathematical and physical basis of TWODEE, the 
Health and Safety Laboratory’s shallow layer model for heavy gas dispersion. In this part, the 
numerical solution method used to simulate the ~WODEE mathematical model is developed. The 
boundary conditions for the leading edge, discussed in part 1, make demanding requirements on 
the computational scheme used. The flux correction scheme of Zalesak [ST. Zalesak, Fully 
multidimensional flux-corrected transport algorithms for fluids, Journal of Computational Physics. 
31 (1979) 335-3621 is used in TWODEE as this has all the required properties. The TWODEE code is 
then tested against a number of theoretical and computational benchmark problems. Crown 
Copyright 0 1999 Published by Elsevier Science B.V. All rights reserved. 
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1. Introduction 

The TWODEE: model introduced in part 1 of this paper requires computational solution 
for industrially useful predictions. Because the boundary conditions specified in part 1 
can result in a large depth gradient at the leading edge, care must be taken in choosing a 
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numerical scheme that eliminates numerical overshoot (which could produce the unreal- 
istic result of negative fluid depths). 

2. Numerical solution of equations in conservation form 

For simplicity, the one-dimensional system of equations 

a~ af 
x+aJc=" (1) 

is considered, where w and f are vector functions of position and time. If, for example, 
the following choice is made: 

h 
w = h( p-pa) 

1 ii 

hu 

f= h( P-P~)U 

I 
(2) 

bu bu*+id P-pJh* 

then this is the shallow water equations in one dimension. Other choices for w and f 
give systems such as the Euler equations. 

Numerical solution of this system of equations is not simple and many numerical 
schemes have been devised; review articles are given by Chock [2] and Woodward and 
Colella [3]. However, only one scheme will be considered here: that of Zalesak [l]. 

Finite difference solution schemes for Eq. (1) must make some type of approximation 
to w = w(x,t), which is a function of both space and time. This is done by discretizing 
space and time and considering only w(xi,t,Jr where xi is the ith grid point and t, the 
nth timestep. It is standard practice to write w(xi,tn) = ~1. Note that, for fixed i and IZ, 
w,? is a vector. 

2.1. The flux correction scheme of Zulesak 

In a frequently cited paper, Zalesak [l] presented an advection scheme that combined 
the low numerical diffusion of high order schemes with the absence of numerical 
oscillations typical of low order schemes. This advection scheme was based on the 
earlier work of Boris and Book [4,5] and Boris et al. [6] but improved upon those works 
by extending their ideas to multiple spatial dimensions. Many workers in the field of 
computational fluid dynamics have used his ideas [3,7]. The following paragraph 
paraphrases Zalesak. 

Flux corrected transport [FCT] is a technique that embodies the advantages of both 
low- and high-order schemes. Fundamentally, FCT calculates the fluxes between 
adjacent fluid elements by taking a weighted average of a flux as computed by a low 
order scheme and the flux as computed by a high order scheme. The weighting is done 
in such a manner as to use the high order scheme unless to do so would result in the 
creation of overshoots (that is, new extrema in w) not predicted by the low order 
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scheme. The assumption is therefore that any new extrema predicted by the low order 
scheme are genuine. 

The method given by Zalesak by which extrema were avoided was to limit each 
element of w above and below by wimaX and wmi”. Briefly, rvlFaX is the maximum value 
that wi may assume without causing an unacceptable (numerical) overshoot; wini” is 
likewise the minimum allowable value of wi. Here, wi is a vector and the above 
characterizations of w,Px and w,*” apply for each value of the index i; so, for example, 
(w;), = h, is the depth of the current at grid point i and (wi12 = h( p - p,) is the 
buoyancy per unit area divided by the gravitational field strength. Each component of wi 
is thus constrained by the corresponding element of the vectors wLFax and w,~~“. A 
complete description of the method is given by Hankin [8]. 

2.2. The two-dimensional shallow water equations in conservation form 

For convenience the two-dimensional, non-entraining shallow water equations are 
restated here. For simplicity, only the case of level ground is considered, viscous forces 
are neglected, and ground drag assumed to be negligible. All dimensionless constants 
identified by Hankin [8] are taken to be unity. Defining 

( h \ 
I hu \ f hu \ 

h(AP) h(Ap)u h(Ap)u 
w= 

hpu 
,.f= hpu* + +g(Ap)h2 and g = hpuL> (3) 

hpu I 
\ hpuu I hpu2 + +g(Ap)h2 I 

where Ap = p - p, is the density difference between the dense layer and that of the 
ambient fluid, gives 

aw af ag 

-z+xc+-== ay (4) 

for the two-dimensional shallow water equations in conservation form. 
These equations are well suited to solution using Zalesak’s method. At least one other 

study, by Webber [9], has used this method for the shallow water equations in one 
dimension. 

2.3. Varying ground elevation and flux correction 

Numerical solution of the shallow water equations must account for varying ground 
elevations-considerations not part of a compressible gas flow calculation. The intro- 
duction of ground elevation requires generalizations to be made to Zalesak’s original 
scheme. In essence, allowance must be made for the fact that two quantities-h and Ap 
-are being advected. This can cause problems when fluid moves over a change in 
ground elevation that (say) halves the fluid depth across one computational element. 
Under these circumstances, it is clear that limiting (wi)* = hAp is not appropriate; in 
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essence, Zalesak’s limiting process is applied to (wi)J(w,), = Ap. A full discussion is 
given by Hankin [8]. 

3. Validation of the computational scheme 

It is now shown that the computational scheme described above accurately simulates 
the physical model developed in part 1 of this paper. Only the idealized case of zero 
entrainment will be considered, as several analytical results exist for this case against 
which the results of the code may be compared. The effects of top- and edge-entrain- 
ment may be accounted for separately. 

The validation exercises will follow a logical order, first testing the most basic 
feature of the computational model (the advection scheme). Next, the gravitational 
forcing terms will be tested by verifying that the momentum and energy of a dense layer 
behave as expected. 

Finally, the code is tested against a number of exact, analytical solutions, as 
recommended by Roache [lo]. 

The computational scheme described is capable of simulating two-dimensional 
shallow water flow with a specified densimetric front Froude number. This capability 
allows the simulation of heavy gas dispersion in two dimensions by a shallow water 
model. 

4. The advection equation 

The code under development incorporates several novel features (mostly generaliza- 
tions and extensions of the flux correction scheme of Zalesak [l] which are detailed by 
Hankin [S]), and several checks on this new scheme will be presented. 

4.1. The advection equation with one scalar quantity 

The advection equation governs the transport of a conserved scalar quantity (cloud 
height in this case) when the velocity field is specified. The velocity field transports the 
scalar quantity from place to place. Any numerical scheme must solve the advection 
equation accurately as this underpins the more general case. 

If h is the fluid depth at any point and II = (u,u) is the fluid velocity, then the 
advection equation for h is 

ah ahu ahv 

-z+an+-=O’ ay 
(5) 

which is the mathematical statement of conservation of fluid volume, written in 
conservation form. Many review articles [2,3,7,11] discuss different numerical solution 
schemes for Eq. (5) together with the problems they encounter. 

The advection equations-as they stand-admit negative fluid depths but physical 
considerations show that this is unrealistic. In the same way, the advection scheme does 
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not explicitly forbid negative depths as artificial extrema are suppressed. This is 
important: slight numerical oscillations near the leading edge could cause negative fluid 
depths which can lead to severe numerical problems. ’ 

The present approach thus does not require an artificially imposed minimum fluid 
depth of zero; rather, negative fluid depths are implicitly forbidden by the nature of the 
problem. This is a desirable feature of any advection solver, both on the grounds of 
computational efficiency and physical accuracy. 

4.2. Tests of computational solutions of the advection equation 

In 1983, Chock and Dunker [12] presented a comparison of several methods of 
solving the two-dimensional advection equation. These workers used a standard test for 
advection schemes, following Sod [7] and this test was carried out on TWODEE and the 
results presented by Hankin [8]. 

The advection scheme recommended by Chock and Dunker was a ‘Chapeau function’ 
method (Pepper et al. [13] outline this scheme) and the second choice was that of 
Zalesak [I]. However, Chock and Dunker warned that “ . . . a severe problem with [the 
Chapeau function method] is the presence of ripples with negative concentrations.” This 
warning renders that particular method of no use for the present problem. 

It is concluded that the best method available for the problem under investigation is 
the multidimensional flux correction scheme of Zalesak, which is the scheme used here. 
The performance of Zalesak’s scheme as implemented in TWODEE [S] was indistinguish- 
able from that of Zalesak’s scheme as implemented by Chock and Dunker. 

5. Energy conservation 

The present formulation of the shallow water equations includes no statement of 
conservation of energy: rather, energy conservation arises as a consequence of the four 
shallow water equations used, if only continuous solutions are considered. It is important 
to show that energy is conserved in the simulations for much the same reasons as those 
given above for momentum. 

Continuous solutions of the shallow water equations conserve energy: 

; + 0. (UE) + v. (UP) =o, 

where K = tphu’ is the kinetic energy per unit area, P = i( p - A)gh* is the potential 
energy per unit area and E = P + K is the total mechanical energy per unit area. This 
equation is proved, and generalized to the entraining case, by Hankin [l]. 

* The shallow water equations are closely related to the Euler equations: the depth of fluid in a shallow 
water simulation is analogous to the density of fluid in a compressible flow and a hydraulic jump is analogous 
to a shock front. The phenomenon of depth (density) oscillations near a hydraulic jump (shock front) is not as 
critical in a compressible flow simulation as a slight amount of numerical oscillation near a shock front will 
not result in negative densities, because the fluid on the upstream side of a shock has a positive density and 
can thus ‘tolerate’ a small amount of oscillation without assuming a negative density anywhere. In contrast, 
because the fluid depth is zero in front of a leading edge, even very small numerical oscillations may result in 
negative fluid depths which would stop the simulation. 
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The fluxes between adjacent fluid elements in flows of industrial interest (such as the 
Thomey Island experiments [14]) are strongly limited by flux-correction and thus 
quantities such as energy may not be precisely conserved. However, the energy loss in 
such simulations is reported by Hankin [8] to be some lo3 times less than the work done 
against the ambient fluid in a resisted dense layer leading edge. It is thus the case that 
the total mechanical energy of a dense fluid layer is conserved to an acceptable degree 
of accuracy. 

Note that a classical hydraulic jump is sometimes considered to be a discontinuous 
solution to the shallow water equations; this is sometimes called a ‘weak solution’. 
Hydraulic jumps are considered more fully below. 

6. The leading edge 

As discussed in part 1 of this paper, the leading edge is modelled in such a way as to 
represent the hydrostatic force pushing the current forward and the drag offered by the 
ambient fluid. Although this method ignores the structure of the leading edge, it will be 
simulated in such a way as to control the following flow in the same way as a real 
current. 

6.1. The leading edge in equilibrium with the following flow 

The approximation of a constant front Froude number implies that the hydrostatic 
(forward) force is balanced by a momentum deficiency in the following flow of ambient 
fluid, following Benjamin [15]. It is important to show that the momentum interaction 
between dense layer and ambient fluid is simulated correctly as the method used is 
novel. 

Fig. 1 shows a schematic view of a resisted dense layer moving from left to right. 
Dense fluid is forced in at the left hand side in such a way as to maintain a densimetric 
Froude number of unity at the point of entry. This should result in a current of uniform 
depth moving in solid body motion away from the source of fluid; at the front the 
hydrostatic force pushing the current forward is matched by the drag afforded by the 
ambient fluid through which the dense layer is intruding. 

Fig. 2 thus shows an accurate simulation, with the exception of a slight numerical 
wiggle at the leading edge which appears to be a characteristic of FCT at a severe 
discontinuity. In view of the smallness of this oscillation (it persists but does not grow) 
and the fact that detailed simulation of the leading edge is not an objective, this 
behaviour is acceptable: the model is accurately simulating the leading edge as discussed 
above. 

6.2. The leading control edge controlling the following flow 

If there is a mismatch between the inflow conditions and the front condition, then the 
leading edge will exert an influence on the rest of the current; the leading edge is said to 
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Fig. 1. Non-entraining one-dimensional gravity current: schematic view. 

‘control’ the following flow. It is necessary for such behaviour to be reproducible as the 
influence of the leading edge may be considerable. 

That the front can control the following flow is seen in Fig. 3 in which the leading 
edge condition is incompatible with the source on the left hand side. This has been done 
by changing the speed of the ambient fluid: the dense layer is now advancing into a 
headwind moving at half the speed of the inflow. As the front densimetric Froude 
number is defined relative to the ambient fluid and not the ground, the headwind is 
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Fig. 2. Non-entraining one-dimensional gravity current: analytical and numerical predictions for stationary 
ambient fluid. 
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Fig. 3. Non-entraining one-dimensional gravity current in headwind: analytical and numerical predictions. 

expected to force the current back; eventually a new equilibrium flow will be reached. 
There is an incompatibility between the inflow conditions and the leading edge. 

The incompatibility causes a hydraulic jump which is close to the analytical predic- 
tion 3 also shown on the figure. The slight oscillations are due to transient waves that 
take a finite time to decay. 

62.1. Hydraulic jumps and energy conservation 
If only continuous solutions are considered, the shallow water equations conserve 

energy (Eq. (6)). However, the proof of Eq. (6) breaks down if discontinuous functions 
are admitted and it can be shown that energy is lost across a jump. 

A hydraulic jump converts directed mechanical energy into random turbulent energy. 
In a hydraulic jump, therefore, some energy has to be dissipated and this occurs in 
nature by turbulent dissipation or waves. A term corresponding to the dissipation has 
been added to this in TWODEE and it is seen to perform satisfactorily. In the absence of 
this dissipative term, energy which would dissipate in a real hydraulic jump is carried 
away by waves that grow and eventually stop the simulation. 

’ The analytical prediction uses the hydraulic jump relation [16] and volume conservation on either side of 
the jump. If R = yZ / yI is the ratio of downstream to upstream fluid depth, F and FIN the densimetric 
Froude numbers at the front and inflow point, respectively, and X = w/ U, the windspeed nondimensionalised 
with the inflow speed, then it can be shown that R4 -2R3+2RZ-2R[1+F,,(X-1+F/F,,)2]+1=0. 
This system has one meaningful root with the specified parameters: R = 1.82, which generated the analytical 
result. 
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6.3. Comparison of TWODEE results with the predictions of Grundy and Rottman [I 71 and 
Britter [I??/ 

This section will compare the results of the present model with the analytical 
solutions given by Grundy and Rottman [ 171 and Britter [ 181. These workers presented 
the radius of an axisymmetric dense current as a function of time, but here the area 
covered will be considered instead. This is because the radius of a dense current is not 
well defined in the present simulation but the area is exactly calculable. 

The problem considered was that of the present study (that is, the shallow water 
equations together with a fixed, specified front Froude number p for the leading edge); 
entrainment was neglected. 

6.3.1. Constant volume axisymmetric dense currents 
In 1985, Grundy and Rottman [17] presented an analysis of planar and axisymmetric 

gravity currents. The axisymmetric results from that paper will be compared to those of 
the present code. 

If a volume V of dense fluid of density p is released onto an infinite, smooth 
horizontal plane, then providing p - p, +K p,, Grundy and Rottman [ 171 argued that the 
radius rm of’ the dense layer at large times t will be asymptotic to 

where g’ is the reduced gravity g( p - p,)/p, and p is the front Froude number. Here, 
t must be large compared to xi/( g’ V)‘/2 where x0 is the initial radius of the dense 
fluid. 

The test case chosen for comparison is the same as used by Hankin [8]; nondimen- 
sionalised results have been presented. The area of the dense layer as predicted by the 
present code and that predicted by Eq. (7) are shown in Fig. 4 to agree closely. 

0 
0 5 10 

time (WC) 

Fig. 4. Comparison of axisymmetric dense current areas: present work and Grundy and Rottman [ 171 
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Fig. 5. Comparison of axisymmetric dense current areas: present work and Britter [ 181. 
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6.3.2. Constant flux axisymmetric dense currents 
If the volume of the dense layer increases linearly with time, the system is said to be 

‘constant flux’. Britter [18] considered this problem and in an intuitively appealing 
argument gave the layer radius as: 

where Q is the volume flow rate and (Y is an empirically determined dimensionless 
number. Britter then gave arguments to suggest that (Y = 1. 

Fig. 5 shows that the area of the dense layer as predicted by the current numerical 
scheme agrees closely with Eq. (8). The step-like appearance of the numerical curve is 
due to the computational discretization: the area increases discontinuously when a new 
fluid element has non-zero depth. The magnitude of the jumps is proportional to the 
gridsize used. 

7. Summary 

The numerical scheme under development has been checked in a number of ways in 
this paper. The advection scheme, being required to eliminate numerical overshoot 
completely, performs adequately. A number of analytical results have been simulated 
accurately. 

There is thus confidence that the computational model solves the discretized shallow 
water equations accurately. 
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